
The path integration of a relativistic particle on a  D-dimensional sphere

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 3201

(http://iopscience.iop.org/0305-4470/30/9/026)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 3201–3217. Printed in the UK PII: S0305-4470(97)76133-X

The path integration of a relativistic particle on a
D-dimensional sphere
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Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of
China

Received 1 July 1996, in final form 18 November 1996

Abstract. The fixed-energy amplitude of a relativistic particle near and on the sphere inD

dimensions is given by the path integral approach. The Duru–Kleinert equivalence between the
project amplitude of a relativistic particle near the surface of spheres inD = 3 and 4 dimensions
with the Rosen–Morse and general Rosen–Morse systems are discussed.

1. Introduction

It is a simple problem to find out the wavefunctions and energy spectra of a particle moving
on a sphere inD dimensions in the Schrödinger theory. Surprisingly, the path integral
approach (PIA) of the same system was only completely solved in the past ten years [1–4].
The reason is that the surface of the sphere is a curved Riemannian space with a constant
intrinsic curvature. The right quantization results for the angular variables on a sphere
correspond to the group quantization rules (for reviews, see [1]). Therefore the correct
rules for path integration in curved spaces should agree with these rules. For this, some
PIA methods in curve space have been proposed in the past [1, 2, 5–12]. A consistent
quantum equivalent principle (QEP) [1, 13–16] for the PIA in curved space was proposed in
1989 [1]. It can be used to construct a consistent new PIA in agreement with correct group
quantization rules in space with curvature and torsion. Moreover, one can obtain the DK-
transformation [1] based on this theory. The Green function with correct energy spectra was
obtained using the new PIA in [17] with QEP. In this paper we apply the QEP to the PIA of
a relativistic particle on a sphere inD dimensions. The correct energy spectra are recovered
by QEP. We shall proceed in two steps [1]. First we shall use the experience gained using
the standard Feynman path integral with angular decompositions of the time-sliced path
integral in Euclidean space to introduce and solve an auxiliary time-sliced path integral
involving only angular variables. This turns out to be very closely related to the desired
path integral on the surface of the sphere. In the second step we shall correct the relativistic
path integral by QEP so it ultimately describes the motion on the sphere. As an application
of the relativistic PIA near a sphere we will discuss the DK-equivalence between the Rosen–
Morse and general Rosen–Morse systems with the amplitudes of a relativistic particle near
spheres inD = 3, 4 dimensions. The similar equivalence for the non-relativistic PIA near
a sphere was given in [18, 19].

This paper is organized as follows. In section 2, we briefly review the formulation of
the path integral for the relativistic potential problems in general affine space. We calculate
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the path integral of a relativistic spinless particle near and on the surface of a sphere inD

dimensions in section 3. In section 4 we discuss the DK-equivalence between the Rosen–
Morse and general Rosen–Morse systems with the relativistic project amplitude of spheres
in D = 3, 4 dimensions. Our conclusions are summarized in section 5.

2. Path integral for relativitistic particle orbits

Let us first consider a point particle of massM moving through a(D + 1)-dimensional
Minkowski space at a relativistic velocity. By usingt = −iτ = −ix4/c, its path integral
representation of the fixed-energy amplitude is conveniently formulated in a(D + 1)-
Euclidean spacetime with the Euclidean metric

(gµν) = diag(1, . . . ,1, c2) (1)

and it is given by [1, 22]

(xb|xa)E = − ih̄

2Mc

∫ ∞
0

dL
∫
Dρ8[ρ]

∫
DDx e−AE/h̄ (2)

with the action integral

AE =
∫ λb

λa

dλ

[
M

2ρ (λ)
x′2 (λ)− ρ (λ) (E − V )

2

2Mc2
+ ρ (λ) Mc

2

2

]
(3)

whereL is the total invariant length of the path

L = c
∫ λb

λa

dλ ρ(λ) (4)

ρ(λ) is an extra dimensionless fluctuating variable and8[ρ] is an appropriate gauge-fixing
functional, for instance, choosing8[ρ] = δ[ρ − 1] to fix ρ(λ) being unity everywhere
[1]. h̄/Mc is the well known Compton wavelength of a particle of massM, (E − V ) is
the system kinetic energy, andx is the spatial part of a (D + 1)-vectorx = (x, τ ) with
invariant lengthx = √x2+ c2τ 2. This path integral forms the basis for studying relativistic
potential problems. To obtain a tractable path integral for the potentialV , we perform a
f -transformation (e.g. [1, 20, 21])

dλ = ds fl(xn)fr(xn−1) (5)

where we have supposed thatfl(x) and fr(x) are invertible but otherwise arbitrary
functions. The freedom in choosingfl,r amounts to an invariance under path-dependentλ-
reparametrizations of the fixed-energy amplitude in (2). By this transformation, the(D+1)-
dimensional relativistic fixed-energy amplitude for arbitrary time-independent potential turns
into

(xb|xa)E ≈ − ih̄

2Mc

∫ ∞
0

dS
fl(xa)fr(xb)√

2πh̄εsbρbfl(xb)fr(xa)/M
D

N+1∏
n=1

[ ∫
dρn 8(ρn)

]

×
N∏
n=1

[ ∫ ∞
−∞

dDxn√
2πh̄εsnρnf (xn)/M

D

]
e−h̄

−1AN (6)

with the s-sliced action

AN =
N+1∑
n=1

[
M(xn − xn−1)

2

2εsnρnfl(xn)fr(xn−1)
− εsnρnfl(xn)fr(xn−1)

(E − V )2
2M

+ εsnρnfl(xn)fr(xn−1)
Mc2

2

]
. (7)
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In the measure, we have used the abbreviationf (xn) = fl(xn)fr(xn). The sign≈ becomes
an equality forN → ∞. By shifting the product index and the subscripts offn by one
unit, and by compensating for this with a prefactor, the integration measure in (6) acquires
the postpoint form∫ ∞

0
dS

fl(xa)fr(xb)√
2πh̄εsbρbfl(xb)fr(xa)/M

D

√
f (xb)

f (xa)

D
N+1∏
n=1

[ ∫
dρn 8(ρn)

]

×
N+1∏
n=2

[ ∫ ∞
−∞

dD1xn√
2πh̄εsnρnf (xn)/M

D

]
. (8)

The integrals over each coordinate difference1xn = xn − xn−1 are performed at fixed
postpoint positionsxn. We note that sincexn are Cartesian coordinates, the measures of
integration in thes-sliced expressions (6) and (8) are certainly identical

N∏
n=1

[ ∫ ∞
−∞

dD xn

]
=

N+1∏
n=2

[ ∫ ∞
−∞

dD 1xn

]
. (9)

However, their images under a non-holonomic mapping [1, 23] are different so that the
initial form of the s-sliced path integral is a matter of choice. In the space with curvature
and torsion it has been proved by [1]. Only the right-hand side of (9) gives the properly
correct results. To simplify the subsequent discussion, it is preferable to work only with the
postpoint regularization in whichfl(x) = f (x) andfr(x) = 1. Then the measure becomes
simply∫ ∞

0
dS

f (xa)√
2πh̄εsbρbf (xa)/M

D

N+1∏
n=1

[ ∫
dρn 8(ρn)

] N+1∏
n=2

[ ∫ ∞
−∞

dD1xn√
2πh̄εsnρnf (xn)/M

D

]
.(10)

To obtain a general formulation in affine space, we now introduce the coordinate
transformation. InD dimensions, it is given by

xi = hi(q). (11)

The differential mapping may be written as

dxi = ∂µhi(q) dqµ = eiµ(q) dqµ. (12)

Since we must find all terms that will eventually contribute to orderε, we expand
(1xn)

2 = (xn − xn−1)
2 up to fourth order in1qµn = q

µ
n − qµn−1 [24, 25]. For the finite

coordinate differences, the non-holonomic mapping of1xn is given by [1]

1xi = eiαq̇α1λ = eiα
[
1qα − 1

2!
0 α
µν 1qµ1qν + 1

3!
(∂σ0

α
µν + 0 τ

µν 0
α

{στ } )

×1qµ1qν1qσ + · · ·
]
. (13)

For brevity we have omitted the argumentqn in the eiαs as well as the subscriptsn of
1qµ. Here eiα and 0 α

µν are evaluated at the postpoint,q̇α stands for dqα/dλ and the
curly bracket around the indices denotes their symmetrization. From this we obtain the
transformed path integral [1]

(xb|xa)E ≈ − ih̄

2Mc

∫ ∞
0

dS
f (qa)√

2πh̄εsbρbf (qa)/M
D

N+1∏
n=1

[ ∫
dρn 8(ρn)

]

×
N+1∏
n=2

[ ∫ ∞
−∞

dD1qng1/2(qn)√
2πh̄εsnρnf (qn)/M

D

]
e−h̄

−1ANtot (14)
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where the totals-sliced action

ANtot =
N+1∑
n=1

Aεtot. (15)

Each slice contains three terms

Aεtot = Aε + AεJ + Aεpot. (16)

The short-time postpoint action is given by [1]

Aε(q, q −1q) = M

2εsρf
(1xi)2 = εsρf M

2
gµνq̇

µq̇ν = M

2εsρf
{gµν1qµ1qν

−0µνλ1qµ1qν1qλ + [ 1
3gµτ (∂κ0λν

τ + 0λνδ0{κδ}τ )+ 1
40λκ

σ0µνσ ]

×1qµ1qν1qλ1qκ + · · ·}. (17)

with the induced metricgµν = eiµe
i
ν and the affine connection0λκµ = ei

µeiκ,λ. The
Jacobian actionAεJ which comes from the right-hand side of (9) can be expressed as [1]

− 1

h̄
AεJ = −0{µν}µ1qν +

1

2
[∂{µ0νκ}κ + 0{νκσ0{σ |µ}}κ − 0{νκ}σ0{σµ}κ ]1qµ1qν + · · · (18)

where the curly double brackets around the indicesν, µ, σ, κ indicate a symmetrization in
τ andσ followed by a symmetrization inµ, ν, σ . The potential actionAεpot has the form

− εsρf
(
E − V (q)

2M

)2

. (19)

In these three equations, we have omitted the subindexn for convenience.
It is useful to re-express our result in a different form which clarifies the relation with

the naive measure [1] of path integration

N∏
n=1

[ ∫
dD xn

]
=

N∏
n=1

[ ∫
dD qn

√
g(qn)

]
. (20)

The correct measure of (14) can be expressed in terms of (20) as

N+1∏
n=2

[ ∫
dD 1qn

√
g(qn)

]
=

N∏
n=1

[ ∫
dD qn

√
g(qn) eA

ε
J0
/h̄

]
(21)

whereAεJ0
is the Jacobian of the coordinate transformation from dDxi and dDqµ. It has the

representation

− 1

h̄
AεJ0
= −0 µ

νµ 1qµ + 1

2
∂ν0νκ

κ1qµ1qν + · · · . (22)

The corresponding expression for thes-sliced relativistic path integral (14) with the naive
measure in the metric-affine space reads

(xb|xa)E ≈ − ih̄

2Mc

∫ ∞
0

dS
f (qa)√

2πh̄εsbρbf (qb)/M
D

N+1∏
n=1

[ ∫
dρn 8(ρn)

]

×
N∏
n=1

[ ∫ ∞
−∞

dD qng1/2(qn)√
2πh̄εsnρnf (qn)/M

D

]
e−h̄

−1ANtot (23)

with each slice in the total actionANtot contains three terms

Aεtot = Aε +1AεJ + Aεpot (24)
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where1AεJ is the difference between the correct and the wrong Jacobian actions in (18)
and (22)

1AεJ = AεJ − AεJ0
. (25)

Either (14) or (23) may be used as the correct path integral formulae in spaces with curvature
and torsion.

In the absence of torsion, the affine connection reduces to the Riemann connection
0{µν}λ = 0̄µνλ. It is easy to check that (25) simplifies to

− 1

h̄
1AεJ =

1

6
R̄µν1q

µ1qν (26)

whereR̄µν is the Ricci tensor. Being quadratic in1q, the effect of the additional action
can easily be evaluated perturbatively according to which1qµ1qν may be replaced by its
lowest-order expectation

〈1qµ1qν〉0 = εsh̄gµν(q)

M
. (27)

Then1AεJ yields the additional effective potential

Veff = − h̄
2

6M
R̄ (28)

where R̄ is the Riemann scalar curvature. By including this potential in the action, the
relativistic path integral in a curved space can be written down in naive measure form as
follows:

(xb|xa)E ≈ − ih̄

2Mc

∫ ∞
0

dS
f (qa)√

2πh̄εsbρbf (qb)/M
D

N+1∏
n=1

[ ∫
dρn 8(ρn)

]

×
N∏
n=1

[ ∫ ∞
−∞

dD qng1/2(qn)√
2πh̄εsnρnf (qn)/M

D

]
exp

{
− 1

h̄

N+1∑
n=1

[Aε + Aεpot+ εsV eff]

}
.

(29)

The integrals overqn are performed successively downwards over1qn+1 = qn+1 − qn at
fixed qn+1.

There is another equivalents-sliced path integral representation which leads to the same
D-dimensional relativistic physics in general metric affine spaces. Its postpoint form of the
s-sliced path integral is given by [1]

(xb|xa)E ≈ − ih̄

2Mc

∫ ∞
0

dS
f (qa)√

2πh̄εsbρbf (qa)/M
D

N+1∏
n=1

[ ∫
dρn 8(ρn)

]

×
N+1∏
n=2

[ ∫ ∞
−∞

dD 1qng1/2(qn)√
2πh̄εsnρnf (qn)/M

D

]
e−h̄

−1∑N+1
n=1 [Aε+AεJ+Aεpot] (30)

where eachs-sliced action has the form

Aε + AεJ + Aεpot =
M

2εsρf
gµν1q

µ1qν − h̄
2
0µ

µ
ν1q

ν + εsρf h2

8M
(0µ

µ
ν)

2

−εsρf
(
E − V (q)

2M

)2

. (31)

Remarkably, this expression only involves the connection contracted in the first two indices

0µ
µν = gµλ0 ν

µλ . (32)
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The relativistic stable path integrals of (6) have a more elegant representation if the
systems are in two-dimensional Minkowski space or rotationally invariant systems in any
dimensions. For simplicity, we consider only rotationally invariant systems. The two-
dimensional systems have the same effective potential. By decomposing the (6) into angular
parts [1, 24, 26–28] and integrating over the angular part, we get

(xb|xa)E = 1

(rbra)(D−1)/2

∞∑
l=0

(rb|ra)fE,l
∑
m̂

Ylm̂(x̂b)Y
∗
lm̂(x̂a) (33)

where the functionsYlm̂(x̂) are theD-dimensional hyperspherical harmonics [29, 30] and
(rb|ra)fE,l is the purely radical amplitude. It has thes-sliced version

(rb|ra)fE,l ≈ −
ih̄

2Mc

∫ ∞
0

dS
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
fl(ra)fr(rb)√

2πh̄εsbρbfl(rb)fr(ra)/M

×
N∏
n=1

[ ∫ ∞
0

drn√
2πh̄εsnρnfn/M

]
exp

{
−1

h̄
A
N,f

l [r, r ′]
}

(34)

with the s-sliced action

A
N,f

l [r, r ′] =
N+1∑
n=1

{
M

2εsnfl(rn)fr(rn−1)ρn
(rn − rn−1)

2

−ρnεsnfl(rn)fr(rn−1)h̄ log ĨD/2−1+l

(
Mrnrn−1

h̄εsnfl(rn)fr(rn−1)ρn

)
−εsnfl(rn)fr(rn−1)ρn

[E − V (rn)]2

2Mc2
+ εsnfl(rn)fr(rn−1)ρn

Mc2

2

}
. (35)

The continuous representation has the form

(rb|ra)fE,l = −
ih̄

2Mc

∫ ∞
0

dS
∫
Dρ 8[ρ(s)]

∫
Dr(s) exp

{
−1

h̄
A
f

l [r, ṙ]

}
(36)

where

A
f

l [r, ṙ] =
∫ S

0
ds

[
M

2ρ(s)fl(r)fr(r)
ṙ2(s)+ ρ(s)fl(r)

×
(
h̄2

2M

(l +D/2− 1)2− 1/4

r2
− [E − V (r)]2

2Mc2
+ Mc

2

2

)
fr(r)

]
. (37)

From the action, we observe that the singular potential can be removed by the regulating
function f (r) = fl(r)fr(r). The action looks like the time-sliced version of the naively
expected radial path integral inD dimensions. It is worth noting that one has to replace
the original centrifugal term by a well-behaved one to make the result convergent when
performing the path integration. The required replacement

h̄2

2M

(l +D/2− 1)2− 1/4

rnrn−1
→−h̄ log ĨD/2−1+l

(
Mrnrn−1

h̄εnρn

)
. (38)

was first introduced in [26].
We now perform a transformation to get a conventional kinetic term

AN0 =
N+1∑
n=1

M

2εsnρn
(1qn)

2. (39)
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This can be achieved by using the transformation functionr = h(q) with

h′2(q) = f (r). (40)

By applying this transformation to (37) and including the measure correction from the QEP,
we get the DK-transform [1] of thes-sliced amplitude

(rb|ra)DK
E,l ≈ −

ih̄

2Mc

∫ ∞
0

dS
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
f

1/4
b f

1/4
a√

2πh̄εsbρb/M

×
N∏
n=1

[ ∫ ∞
0

d1qn√
2πh̄εsnρn/M

]
exp

{
− 1

h̄

N+1∑
n=1

[
M

2εsnρn
(1qn)

2+ εsnρnf (qn)

×
[
h̄2

2M

(l +D/2− 1)2− 1/4

rnrn−1
− [E − V (rn)]2

2Mc2
+ Mc

2

2

]
+ εsnρnV eff

}
(41)

which has the continuum limit

(rb|ra)DK
E,l =

−ih̄

2Mc
f

1/4
b f 1/4

a

∫ ∞
0

dS
∫
Dρ8 [ρ]

∫
Dq e−A

DK
s /h̄ (42)

with

ADK
s =

∫ S

0
ds

[
M

2ρ(s)
q̇2(s)+ ρ(s)f (q(s))

×
(
h̄2

2M

(l +D/2− 1)2− 1/4

r2(q(s))
− [E − V (r)]2

2Mc2
+ Mc

2

2

)
+ ρ(s)V eff

]
. (43)

The superscript DK in (43) indicates that the system has been performed by the DK-
transformation. The effective potentialV eff is given by (e.g. [1, 31])

V eff = − h̄
2

M

[
1

4

h′′′

h′
− 3

8

(
h′′

h′

)2
]
. (44)

By defining theq-space amplitude

(qb|qa) ≡ −i
∫ ∞

0
dS
∫
Dρ8 [ρ]

∫
Dq e−A

DK
s /h̄ (45)

we can represent (40) as

(rb|ra)DK
E,l ≡

h̄

2Mc
f

1/4
b f 1/4

a (qb|qa). (46)

This equation is the DK-transform of an arbitrary relativistic time-independent potential
problem. In the paper, we will use this transformation to evaluate the path integral of the
Rosen–Morse system.

3. A relativistic mass point near and on a sphere

The time-sliced path integral of a relativistic mass point near a sphere can be given from
(2) by restricting the radial variabler to the surface of a fixed radiusR and identifying the
unit vectorx̂ with û. It has theλ-slicing form

(ub|ua)E ≈ −ih̄

2Mc

∫ ∞
0

dL
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
1

(2πh̄εbρb/MR2)(D−1)/2

×
N∏
n=1

[ ∫
dun

(2πh̄εnρn/MR2)(D−1)/2

]
e−A

N
E /h̄ (47)
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with the sliced action

ANE =
N+1∑
n=1

{
MR2

2ρnεn
(un − un−1)

2− ρnεn
(
E2

2Mc2
− Mc

2

2

)}
. (48)

By decomposing the first term of (48) into angular parts [1–3], we have

exp

[
− MR2

2h̄εnρn
(un − un−1)

2

]
=
∞∑
l=0

ãl(ςn)
∑
m

Ylm(un)Y
∗
lm(un−1) (49)

where

ãl(ςn) =
(

2π

ςn

)(D−1)/2

ĨD/2+l−1(ςn) ςn = MR2

h̄εnρn
(50)

with Ĩν(z) being defined bỹIν(z) =
√

2πz e−zIν(z). TheYlm(un) denote the hyperspherical
harmonics. The time-sliced path integral (47) of a relativistic particle near a sphere in
D dimensions can be solved by applying the orthonormal relation of the hyperspherical
harmonic and using the asymptotic behaviour [1, 30]

Ĩν(z)
z→∞−→ 1− m

2− 1/4

2z
+ · · · = e(−m

2−1/4)/2z + · · · (51)

to (47). The continuum limit is given by

(ub|ua)E = h̄

2Mc

∞∑
l=0

2Mc2h̄i

E2− {M2c4+ (ch̄/R)2[(D/2+ l − 1)2− 1/4]}
×
∑
m

Ylm(ub)Y
∗
lm(ua) (52)

where we eliminateρn by choosing the gauge-fixed functional as anδ-functional, i.e.
8[ρ] = δ[ρ − 1]. It is easy to check in the non-relativistic case, i.e. whenc → ∞,
the energy spectra [1] of a particle near a sphere are recovered and given by

E = ±
(
Mc2+ h̄

2[(D/2+ l − 1)2− 1/4]

2MR2

)
. (53)

In (53), the rest energyMc2 and the minus sign are ignored in the non-relativistic theory.
In D = 3 and 4, the formulae for (52) become the familiar representations

(ub|ua)E = h̄

2Mc

∞∑
l=0

2Mc2h̄i

E2− {M2c4+ (ch̄/R)2l(l + 1)}
2l + 1

4π

×
l∑

m=−l

(l −m)!
(l +m)!P

m
l (cosθb)P

m
l (cosθa)e

im(ϕb−ϕa) (54)

and

(ub|ua)E = h̄

2Mc

∞∑
l=0

2Mc2h̄i

E2− {M2c4+ (ch̄/R)2[(l + 1)2− 1/4]}
l + 1

2π2

×
l/2∑

m1=−l/2
m2=−l/2

D(l/2)
m1m2

(ϕb, θb, γb)D
(l/2)∗
m1m2

(ϕa, θa, γa) (55)

respectively, whereD(l/2)
m1m2(ϕ, θ, γ ) are the representation functions of the rotation group.

There are two corrections [1, 32] which must be added to bring the path integral from near
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to on the sphere. First the time-sliced action must measure the proper geodesic distance.
For this, we have

ANE,on = ANE +14A
N =

N+1∑
n=1

{
MR2

ρnεn
(1− cos1θn)+ MR2

24ρnεn
(1θn)

4+ · · ·

· · · −ρnεn
(
E2

2Mc2
− Mc

2

2

)}
(56)

where1θn is the small angle betweenun andun−1. There is no need to go higher than
quartic order since only the quartic term contributes to the relevant orderε in the limit
N →∞. Let us calculate the14A

N contribution inD dimensions. For very smallε, the
fluctuations near the sphere will lie close to the(D − 1)-dimensional tangent space. Let
1xn be the coordinates in this space. Then we can write

14A
N ≈ MR2

24ε

N+1∑
n=1

(
1xn

R

)4

. (57)

The 1xns have the lowest-order correlation〈1xi1xj 〉0 = (h̄ε/M)δij . This shows that
14A

N has the expectation [1]

〈14A
N 〉0 = h̄2

2MR2

(D2− 1)

12

N+1∑
n=1

ρnεn (58)

where(D2−1)/12 is the contribution of the quartic term. The result is obtained by using the
Wick contraction rules for the tensor〈1xi1xj1xk1xl〉0 = (εh̄/M)×(δij δkl+δikδjl+δilδjk).
This quantity will offer a correction in part. Second, the measure correction from the QEP
for each short time in curved space without torsion is given by (26)

1measA
ε
J = −

h̄

6
Rµν1q

µ1qν. (59)

Here Rµν is the Ricci tensor which is(D − 2)gµν/R2 for a sphere of radiusR. The
perturbative treatment of this correction gives the relevant contribution [1] to the energy

〈1measAJ 〉0 = − h̄
2

6M

(D − 1)(D − 2)

R2

N+1∑
n=1

εnρn. (60)

When we add these two corrections to (47), the amplitude for a relativistic mass point on
a sphere is

(ub|ua)E = h̄

2Mc

∞∑
l=0

2Mc2h̄i

E2− {M2c4+ (ch̄/R)2[l(l +D − 2)]}
∑
m

Ylm(ub)Y
∗
lm(ua). (61)

It is easy to check that the amplitude has the correct non-relativistic limit. We note that
the amplitudes in (52) and (61) display the same wavefunctions for a particle moving on
or near the sphere in spite of the particle being relativistic or not. This is because of the
symmetry property of the sphere. Before closing this section it is worth stressing that by
fixing to the sphere the relativistic invariance is violated.

4. The DK-equivalence between the project amplitude of a relativistic particle near a
sphere with the Rosen–Morse potential

As in the non-relativistic case [1, 19], we can project the path integral of a relativistic
particle near the surface of a sphere into a fixed azimuthal quantum numberm. There are
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similar angular barriers which arise in this projection. We can apply the DK-transformation
to the relativistic project amplitudes of a particle near spheres inD = 3, 4 dimensions.
The equivalence between the project amplitudes and the Rosen–Morse systems will be
reproduced.

4.1. The DK-equivalence between the project amplitude of a relativistic particle near a
sphere inD = 3 dimensions with the Rosen–Morse potential

In D = 3, the project amplitude of the fixed azimuthal quantum numberm can be defined
by [1]

(ub|ua)E =
∑
m

1√
sinθb sinθa

(θb|θa)E,m 1

2π
eim(ϕb−ϕa). (62)

Comparing (62) with (54), the projected amplitude can immediately be obtained by

(θb|θa)E,m =
√

sinθb sinθa
∑
l=m

ich̄2

E2− {M2c4+ (ch̄/R)2l(l + 1)}
2l + 1

2

(l −m)!
(l +m)!

×Pml (cosθb)P
m
l (cosθa). (63)

It is easy to find theλ-sliced path integral representation of this projective amplitude by
comparing (62) and (47). It has the form

(θb|θa)E,m ≈ −ih̄

2Mc

∫ ∞
0

dL
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
1√

2πh̄εbρb/MR2

×
N∏
n=1

[ ∫
dθn√

2πh̄εnρn/MR2

]
e−A

N
E,m/h̄ (64)

where

ANE,m =
N+1∑
n=1

{
MR2

εnρn
[1− cos(θn − θn−1)] − h̄ log Ĩm(hn)− εnρn

(
E2

2Mc2
− Mc

2

2

)}
(65)

with hn being defined by

hn = MR2

h̄εnρn
sinθn sinθn−1. (66)

Later applications will require an analytic continuation of the path integral from integer
values ofm to arbitrary real valuesν > 0. For the arbitrary valueν, the relativistic
amplitude can be calculated with the help of the addition theorem (e.g. [1])

Iν(ςn sinα sinβ) eςn cosα cosβ =
√

2π

ςn

∞∑
k=0

(k + ν + 1/2)
0(k + 2ν + 1)

k!

×Ik+ν+1/2(ςn)P
−ν
k+ν(cosα)P−νk+ν(cosβ) (67)

and the orthogonal relation∫ 1

−1
(d cosθ)P−νk+ν(cosθ)P−νk′+ν(cosθ) = k!

(k + 2ν)!

2

2k + 2ν + 1
δkk′ (68)
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where ν represents arbitrary real values. After some mathematical manipulations, the
resulting amplitude is given by

(θb|θa)E,ν =
√

sinθb sinθa
∞∑
n=0

ich̄2

E2− {M2c4+ (ch̄/R)2(n+ ν)(n+ ν + 1)} (n+ ν + 1/2)

×0(n+ 2ν + 1)

n!
P−νn+ν(cosθb)P

−ν
n+ν(cosθa). (69)

This amplitude can be summed via a Sommerfeld–Watson transformation [33, 34] which
leads to a simple closed-form expression (forθb > θa)

(θb|θa)E,ν = h̄

2Mc

−iµ

h̄
0(ν − l(E))0(ν + l(E)+ 1)P−νl(E)(− cosθb)P

−ν
l(E)(cosθa) (70)

whereµ = MR2 and l(E) is defined by

l(E) = −1

2
+
√

1

4
+ 2µ

h̄2

(
E2

2Mc2
− Mc

2

2

)
. (71)

With the analytic continuationν of m, we observe that (64) has the continuum limit

(θb|θa)rel
PT =

−ih̄

2Mc

∫ ∞
0

dL
∫
Dρ 8[ρ]

∫
Dθ e−A

rel
PT/h̄ (72)

with the action

Arel
PT =

∫ λb

λa

dλ

[
µ

2ρ(λ)
θ ′2− ρ(λ) h̄

2

8µ
+ ρ(λ) h̄

2

2µ

ν2− 1/4

sin2 θ
− ρ(λ)

(
E2

2Mc2
− Mc

2

2

)]
(73)

where we have labelled the amplitude and action with rel and PT to denote that the problem
is relativistic and the action has Pöschl–Teller potential [35, 36], respectively. As in the
non-relativistic case [1], the action has a 1/ sin2 θ singularity atθ = 0 andθ = π . Only
with the property time-sliced action (65), this path integral is stable for allν.

In the following we wish to prove the DK-equivalence between the Rosen–Morse system
and the relativistic P̈oschl–Teller system. First we takef (θ) = sin2 θ to proceed thef -
transformation. This will remove the singularity in (73). The transformed action is given
by

A
rel,f
PT =

∫ S

0
ds

{
µ

2ρ(s) sin2 θ
θ̇2(s)− ρ(s)h̄

2

8µ
sin2 θ + ρ(s)h̄

2

2µ
(ν2− 1/4)

−ρ(λ)
(
E2

2Mc2
− Mc

2

2

)
sin2 θ

}
. (74)

We now bring the kinetic term to the conventional form by solving the first-order differential
equation dθ/dx = h′(x). The variable change is√

f = sinθ = h′(x) = 1

coshx
(75)

which maps intervalθ ∈ (0, π) into x ∈ (−∞,∞). Therefore we have the effective
potential

Veff = − h̄
2

M

[
1

4

h′′′

h′
− 3

8

(
h′′

h′

)2
]

= h̄2

8µ

(
1+ 1

cosh2 x

)
. (76)
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The DK-transform of the action is given by

A
rel,DK
PT =

∫ S

0
ds

{
µ

2ρ
ẋ2(s)+ ρh̄

2

2µ
ν2− ρ

cosh2 x

(
E2

2Mc2
− Mc

2

2

)}
. (77)

After choosing the gauge-fixed functional8[ρ] as aδ-functional, the action describes the
motion of a non-relativistic particle in the smooth Rosen–Morse potential [36, 37]

VRM(x) = − h̄
2

2µ

s(s + 1)

cosh2 x
. (78)

Comparing the above equation with (77), we get the relation of the parameters between two
systems

l(E) = s (79)

ν(ERM) =
√
−2µERM

h̄2 . (80)

Therefore the DK equivalent relation is given by

(θb|θa)rel,DK
PT = h̄

2Mc

√
sinθb sinθa(xb|xa)ERM . (81)

From this we get the amplitude of the Rosen–Morse potential system

(xb|xa)ERM=
−iµ

h̄
0(ν(ERM)− s)0(ν(ERM)+ s + 1)P−ν(ERM)

s (tanhxb)P
−ν(ERM)
s (− tanhxa).

(82)

This result was given in [32] where the amplitude comes from the DK-transform of the
non-relativistic system.

4.2. The DK-equivalence between the project amplitude of a relativistic particle near a
sphere inD = 4 dimensions with the general Rosen–Morse potential

For a particle near a sphere inD = 4, the project amplitude of the fixed azimuthal quantum
numberm1, m2 can be defined by [1]

(ub|ua)E =
l/2∑

m1=−l/2
m2=−l/2

8√
sinθb sinθa

(θb|θa)E,m1,m2

1

2π
eim1(ϕb−ϕa) 1

4π
eim2(γb−γa). (83)

A comparison with (55) immediately gives the normalized projected amplitude

(θb|θa)E,m1,m2 =
√

sinθb sinθa
∑
l

ich̄2

E2− {M2c4+ (ch̄/R)2[(l + 1)2− 1/4]}
(l + 1)

2

×dl/2m1,m2
(θb)d

l/2
m1,m2

(θa) (84)

wherel is summed from the larger value of|2m1|, |2m2| to infinity. This amplitude and its
path integral representation can be continued to arbitrary real valuesm1 = µ1 andm2 = µ2

with µ1 > µ2 > 0 [33]. Moreover, the path integral representation of the project amplitude
can be obtained by using (47)–(50). It has the time-sliced form

(θb|θa)E,m1,m2 ≈
−ih̄

2Mc

∫ ∞
0

dL
N+1∏
n=1

[ ∫
dρn 8(ρn)

]
1√

2πh̄εbρb/(M/4)R2

×
N∏
n=1

[ ∫
dθn√

2πh̄εnρn/(M/4)R2

]
e−A

N
E,m1,m2

/h̄ (85)
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with

ANE,m1,m2
=

N+1∑
n=1

{
MR2

εnρn
[1− cos(θn − θn−1)/2]− h̄ log Ĩ|m1+m2|(h

c
n)− h̄ log Ĩ|m1−m2|(h

s
n)

−εnρn
(
E2

2Mc2
− Mc

2

2

)}
(86)

where thehcn andhsn are defined by

hcn =
MR2

h̄εnρn
cosθn/2 cosθn−1/2 (87)

hsn =
MR2

h̄εnρn
sinθn/2 sinθn−1/2. (88)

The analytic continuation of the amplitude (84) can be obtained by applying the folowing
equality (e.g. [1])

Iµ+(ςn cosθn/2 cosθn−1/2)Iµ−(ςn sinθn/2 sinθn−1/2) = 2

ςn

∞∑
k=0

(2k + µ+ + µ− + 1)

×I2k+µ++µ−+1(ςn)d
k+µ1
µ1,µ2

(θn)d
k+µ1
µ1,µ2

(θn−1) (89)

with

µ1 ≡ µ+ + µ−
2

µ2 ≡ µ+ − µ−
2

(90)

and the orthogonal relation∫ 1

−1
d cosθdk+µ1

µ1,µ2
(θ)dk

′+µ1
µ1,µ2

(θ) = 2

2k + µ+ + µ− + 1
δkk′ . (91)

With a bit of mathematical treatment, the continuation solution of the relativistic amplitude
(85) is found to be

(θb|θa)E,µ1,µ2 =
√

sinθb sinθa
∞∑
n=0

ich̄2

E2− {M2c4+ (ch̄/R)2[(2n+ 2µ1+ 1)2− 1/4]
}

× (2n+ 2µ1+ 1)

2
dn+µ1
µ1,µ2

(θb)d
n+µ1
µ1,µ2

(θa). (92)

As in the non-relativistic case [33], the sum overn can be performed by Sommerfeld–Watson
transformation. It has the close form forθb > θa:

(θb|θa)E,µ1,µ2 =
h̄

2Mc

√
sinθb sinθa

−iµ

h̄
0(µ1− l(E)/2)0(l(E)/2− µ1+ 1)

×dl(E)/2µ1,−µ2
(θb − π)dl(E)/2µ1,µ2

(θa) (93)

with µ = MR2/4 and

l(E)

2
= −1

2
+ 1

2

√
1

4
+ 2µ

h̄

(
E2

2Mc2
− Mc

2

2

)
. (94)

We note that (86) has the continuum limit

Arel
PT′ =

∫ λb

λa

dλ

{
MR2

8ρ(λ)
θ ′2− ρ(λ)h̄

2

8MR2
+ ρ(λ)h̄

2

2MR2

[ |µ1+ µ2|2− 1/4

cos2 θ/2
+ |µ1− µ2|2− 1/4

sin2 θ/2

]
−ρ(λ)

(
E2

2Mc2
− Mc

2

2

)}
. (95)
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Apart from the projected motion of a relativistic mass point near the surface of the sphere,
this action, lettingρ = 1, also describes the dynamic of a particle in the general Pöschl–
Teller potential [35, 36]

VPT′(θ) = h̄2

2µ

[
s1(s1+ 1)

sin2 θ/2
+ s2(s2+ 1)

cos2 θ/2

]
. (96)

The subscript PT′ in the action of (95) denotes the above property. The superscript denotes
that the particle is relativistic. We now introduce the auxiliary parameterµ = MR2/4.
After rearranging the potential terms, we get the path integral representation of the project
amplitude

(θb|θa)rel
PT′ =

−ih̄

2Mc

∫ ∞
0

dL
∫
Dρ 8[ρ]

∫
Dθ e−A

rel
PT′ /h̄ (97)

with the action

Arel
PT′ =

∫ λb

λa

dλ

[
µ

2ρ(λ)
θ ′2− ρ(λ) h̄

2

32µ
+ ρ(λ) h̄

2

2µ

µ2
1+ µ2

2− 1/4− 2µ1µ2 cosθ

sin2 θ

−ρ(λ)
(
E2

2Mc2
− Mc

2

2

)]
(98)

where the functional measure has the time-sliced form∫
Dθ ≈ 1√

2πh̄εbρb/µ

N∏
n=1

[ ∫
dθn√

2πh̄εnρn/µ

]
. (99)

Here we observe that the similar angular barriers in the non-relativistic case still survive.
This is a natural result when we project the path integral near the surface of a sphere into
the fixed azimuthal quantum numbers.

In the following, we wish to prove the equivalent relation between the relativistic
Pöschl–Teller system of (97) and the general Rosen–Morse potential. Sincef (θ) = sin2 θ

one can remove the angular barrier. Therefore thef -transformed action is given by

A
rel,f
PT′ =

∫ S

0
ds

[
µ

2ρ(s) sin2 θ
θ̇2(s)− ρ(s)h̄

2

32µ
sin2 θ + ρ(s)h̄

2

2µ

×[µ2
1+ µ2

2− 1/4− 2µ1µ2 cosθ ] − ρ(s)
(
E2

2Mc2
− Mc

2

2

)
sin2 θ

]
. (100)

We now perform theh-transformation to transform the kinetic term into the conventional
type by

h′ = sinθ = ± 1

coshx
cosθ = − tanhx. (101)

We note that the intervalθ ∈ (0, π) is mapped intox ∈ (−∞,∞) again. From (76) the
effective potential is

Veff = h̄2

8µ

(
1+ 1

cosh2 x

)
. (102)

Therefore from (100) we get the DK-transformation

A
rel,DK
PT′ =

∫ S

0
ds

{
µ

2ρ
ẋ2(s)+ ρh̄

2

2µ
[µ2

1+ µ2
2+ 2µ1µ2 tanhx] − ρ

cosh2 x

×
[(

E2

2Mc2
− Mc

2

2

)
− 3h̄2

32µ

]}
. (103)
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This action, choosingρ = 1, has the general Rosen–Morse potential

VRM′(x) = h̄2

2µ

[
− s(s + 1)

cosh2 x
+ 2A tanhx

]
(104)

with the relation of the parameters between two systems(
E2

2Mc2
− Mc

2

2

)
− 3h̄2

32µ
= h̄2

2µ
s(s + 1) (105)

µ1µ2 = A (106)

ERM′ = − h̄
2

2µ

[
µ2

1+
(
A

µ1

)2 ]
. (107)

Applying (105) to (94), we determine the third parameter relation

l(E)/2= s. (108)

Finally we obtain the amplitude of the general Rosen–Morse system by

(θb|θa)rel.DK
PT′ =

h̄

2Mc

√
sinθb sinθa(xb|xa)ERM′ . (109)

Explicitly, the amplitude can be expressed by

(xb|xa)ERM′ =
−iµ

h̄
0(µ1− s)0(s − µ1+ 1)dsµ1,−µ2

(θb(x)− π)dsµ1,µ2
(θa(x)) (110)

with the variables relation

cosθ = − tanhx θ ∈ (0, π) x ∈ (−∞,∞). (111)

This result was also obtained in [33] from the non-relativistic DK-transformation.

5. Summary

In this paper we have calculated the path integrals of a relativistic particle near and on
a sphere. As an application, we get the amplitudes of Rosen–Morse and general Rosen–
Morse systems by applying the DK-transformation to the relativistic project amplitudes of
a particle near the surface of spheres inD = 3, 4 dimensions. From this application, we
observe that the path integrals of some relativistic potential problems, controlled by Klein–
Gordon equation in operator level, can also be solved by DK-transformation. There are two
interesting problems which relate to a relativistic particle on a sphere in four-dimensional
Euclidean space. First, a relativistic particle moves on anSU(2) group. We immediately
obtain, owing to theSU(2) ≈ S3, the relativistic path integral on the groupSU(2). Second,
the difference betweenSU(2) and the spinning top is that theSU(2) is two points covering
the space of the spinning top [1]. On the spinning top, the Euler anglesγ and γ + 2nπ
are physically indistinguishable, wheren is an arbitrary integer. The amplitude must reflect
this property. There is a simplest possibility. It is given by

(ϕb, θb, γb|ϕa, θa, γa)rel
E,top = (ϕb, θb, γb|ϕa, θa, γa)rel

E,SU(2)

+(ϕb, θb, γb + 2π |ϕa, θa, γa)rel
E,SU(2). (112)

Here the normalized amplitude(ϕb, θb, γb|ϕa, θa, γa)rel
E,SU(2) is defined by [1]

(ub|ua)rel
E,sphere=

1

2π
(ϕb, θb, γb|ϕa, θa, γa)rel

E,SU(2). (113)
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The sum in (112) eliminates all half-integer representation functionsD
l/2
mm′ in the expansion

(55) of the amplitude.
From the viewpoint of the exactly solvable problems [31, 38], the relativistic problems

discussed in this paper can be integrated into the group path integral even though they are
controlled by the Klein–Gordon equation in the operator level. A more unified description
for the classification of the path integral solutions is achieved.
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